西师大版五年级数学下册知识要点总结
语文 | 作文 | 数学 | 英语 | 物理 |
化学 | 地理 | 生物 | 历史 | 育儿 |
音美 | 道德与法治 | 中学生辅导 |
西师大版五年级数学下册
(义务教育教科书)
二 分数
综合与实践 设计长方体的包装方案
你知道吗 阿基米德巧辨皇冠真假
探索规律
综合与实践 发豆芽
七 总复习
扫码下载全册教案文档
下载地址
https://m.1ydt.com/v/box-11_34_44_62
知识点总结
第一章、因数和倍数
1、整除:被除数、除数和商都是自然数,并且没有余数。
整数与自然数的关系:整数包括自然数。
2、因数、倍数:大数能被小数整除时,大数是小数的倍数,小数是大数的因数。
例:12是6的倍数,6是12的因数。
(1)数a能被b整除,那么a就是b的倍数,b就是a的因数。因数和倍数是相互依存的,不能单独存在。
(2)一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。
一个数的因数的求法:成对地按顺序找。
(3)一个数的倍数的个数是无限的,最小的倍数是它本身。
一个数的倍数的求法:依次乘以自然数。
(4)2、3、5的倍数特征
1) 个位上是0,2,4,6,8的数都是2的倍数。
2)一个数各位上的数的和是3的倍数,这个数就是3的倍数。
3)个位上是0或5的数,是5的倍数。
4)能同时被2、3、5整除(也就是2、3、5的倍数)的最大的两位数是90,最小的三位数是120。
同时满足2、3、5的倍数,实际是求2×3×5=30的倍数。
5)如果一个数同时是2和5的倍数,那它的个位上的数字一定是0。
3、完全数:除了它本身以外所有的因数的和等于它本身的数叫做完全数。
如:6的因数有:1、2、3(6除外),刚好1+2+3=6,所以6是完全数,小的完全数有6、28等
4:自然数按能不能被2整除来分:奇数、偶数。
奇数:不能被2整除的数。叫奇数。也就是个位上是1、3、5、7、9的数。
偶数:能被2整除的数叫偶数(0也是偶数),也就是个位上是0、2、4、6、8的数。
最小的奇数是1,最小的偶数是0.
关系: 奇数+偶数=奇数 奇数+ 奇数=偶数 偶数+偶数=偶数。
奇数-偶数=奇数 奇数-奇数=偶数 偶数-偶数=偶数
5、自然数按因数的个数来分:质数、合数、1、0四类.
质数(或素数):只有1和它本身两个因数。
合数:除了1和它本身还有别的因数(至少有三个因数:1、它本身、别的因数)。
1: 只有1个因数。“1”既不是质数,也不是合数。
0:
最小的质数是2,最小的合数是4,连续的两个质数是2、3。
每个合数都可以由几个质数相乘得到,质数相乘一定得合数。
20以内的质数:有8个(2、3、5、7、11、13、17、19)
100以内的质数有25个:2、3、5、7、11、13、17、19、23、29、31、37、41、
43、47、53、59、61、67、71、73、79、83、89、97
100以内找质数、合数的技巧:
看是否是2、3、5、7、11、13…的倍数,是的就是合数,不是的就是质数。
关系: 奇数×奇数=奇数 质数×质数=合数
6、最大、最小
A的最小因数是:1; 最小的奇数是:1;
A的最大因数是:A; 最小的偶数是:0;
A的最小倍数是:A; 最小的质数是:2;
最小的自然数是:0; 最小的合数是:4;
7、分解质因数:把一个合数分解成多个质数相乘的形式。
用短除法分解质因数 (一个合数写成几个质数相乘的形式)。
比如:30分解质因数是:(30=2×3×5)
8、互质数:公因数只有1的两个数,叫做互质数。
两个质数的互质数:5和7
两个合数的互质数:8和9
一质一合的互质数:7和8
两数互质的特殊情况:
⑴1和任何自然数互质;⑵相邻两个自然数互质;⑶两个质数一定互质;
⑷2和所有奇数互质; ⑸质数与比它小的合数互质;
9、公因数、最大公因数
几个数公有的因数叫这些数的公因数。其中最大的那个就叫它们的最大公因数。
用短除法求两个数或三个数的最大公因数 (除到互质为止,把所有的除数连乘起来)
几个数的公因数只有1,就说这几个数互质。
如果两数是倍数关系时,那么较小的数就是它们的最大公因数,较大的那个数就是它的最小公倍数。
如果两数互质时,那么1就是它们的最大公因数。
10、公倍数、最小公倍数
几个数公有的倍数叫这些数的公倍数。其中最小的那个就叫它们的最小公倍数。
用短除法求两个数的最小公倍数(除到互质为止,把所有的除数和商连乘起来)
用短除法求三个数的最小公倍数(除到两两互质为止,把所有的除数和商连乘起来)
如果两数是倍数关系时,那么较大的数就是它们的最小公倍数。
如果两数互质时,那么它们的积就是它们的最小公倍数。
11、求最大公因数和最小公倍数方法
用12和16来举例
1、 求法一:(列举求同法)
最大公因数的求法:
12的因数有:1、12、2、6、3、4
16的因数有:1、16、2、8、4
最大公因数是4
最小公倍数的求法:
12的倍数有:12、24、36、48、…
16的倍数有:16、32、48、…
最小公倍数是48
2、求法二:(分解质因数法)
12=2×2×3
16=2×2×2×2
最大公因数是:2×2=4 (相同乘)
最小公倍数是:2×2 × 3×2×2=48 (相同乘×不同乘)
二 分数的意义和性质
1、分数的意义:一个物体、一物体等都可以看作一个整体,把这个整体平均分成若干份,这样的一份或几份都可以用分数来表示。
2、单位“1”:一个整体可以用自然数1来表示,通常把它叫做单位“1”。(也就是把什么平均分什么就是单位“1”。)
3、分数单位:把单位“1”平均分成若干份,表示其中一份的数叫做分数单位。如的分数单位是。
4、分数与除法
A÷B=(B≠0,除数不能为0,分母也不能够为0) 例如: 4÷5=
5、真分数和假分数、带分数
1、真分数:分子比分母小的分数叫真分数。真分数<1。
2、假分数:分子大于或等于分母的分数叫假分数。假分数≧1
3、带分数:带分数由整数和真分数组成的分数。带分数>1。
6、真分数<1≤假分数 真分数<1<带分数
7、假分数与整数、带分数的互化
(1)假分数化为整数或带分数,用分子÷分母,商作为整数,余数作为分子,如:
(2)整数化为假分数,用整数乘以分母得分子如:
(3)带分数化为假分数,用整数乘以分母加分子,得数就是假分数的分子,分母不变,如:
(4)1等于任何分子和分母相同的分数。如:
8、分数的基本性质:
分数的分子和分母同时乘以或除以相同的数(0除外),分数的大小不变。
9、最简分数:分数的分子和分母只有公因数1,像这样的分数叫做最简分数。
一个最简分数,如果分母中除了2和5以外,不含其他的质因数,就能够化成有限小数。反之则不可以。
10、约分:把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。
11、通分:把异分母分数分别化成和原来相等的同分母分数,叫做通分。如:
12、分数和小数的互化
(1)小数化为分数:数小数位数。一位小数,分母是10;两位小数,分母是100……
(2)分数化为小数:
方法一:把分数化为分母是10、100、1000……
方法二:用分子÷分母
(3)带分数化为小数:
先把整数后的分数化为小数,再加上整数
13、比分数的大小: 分母相同,分子大,分数就大;
分子相同,分母小的,分数大。
分数比较大小的一般方法:同分子比较;通分后比较;化成小数比较。
14、分数化简包括两步:一是约分;二是把假分数化成整数或带分数。
15、两个数互质的特殊判断方法:
① 1和任何大于1的自然数互质。
② 2和任何奇数都是互质数。
③ 相邻的两个自然数是互质数。
④ 相邻的两个奇数互质。
⑤ 不相同的两个质数互质。
⑥当一个数是合数,另一个数是质数时(除了合数是质数的倍数情况下),一般情况下这两个数也都是互质数。
16、求最大公因数的方法:
① 倍数关系: 最大公因数就是较小数。
② 互质关系: 最大公因数就是1
③一般关系: 从大到小看较小数的因数是否是较大数的因数。
17、分数知识小结:
(1)分数的意义:把单位“1”平均分为几份表示其中的一份或几份。(如:把一根绳子平均分为5份,其中的一份就是五分之一,两份就是五分之二。)
(2)分数与除法:分子(被除数),分母(除数),分数值(商)。
(4)带分数:由整数和真分数组成,带分数一定是假分数。
(5)假分数化带分数、整数(分子除以分母,商作整数部分,余数作分子)
(6)分数的基本性质:分数的分子、分母同时扩大或缩小相同的倍数,分数的大小不变。
(7)最简分数 分子分母互质的分数(最简真分数、最简假分数)
(8)通分:根据分数的基本性质,把几个异分母分数化成与原来分数相等的同分母的分数的过程,叫做通分。 通分的方法:1、先求出原来几个分数的分母的最简公分母;2. 根据分数的基本性质,把原来分数化成以最简公分母为分母的分数。
【约分】是对一个分数而言的,求出分子分母的最大公约数,然后分子分母【同除】这个最大公约数,约简得到相等的新分数,这个新分数,这个最简分数分子分母必须是互质。
三 长方体和正方体
1、由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫做长方体。两个面相交的边叫做棱。三条棱相交的点叫做顶点。相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。
长方体特点:
(1)有6个面,8个顶点,12条棱,相对的面的面积相等,相对的棱的长度相等。
(2)一个长方体最多有6个面是长方形,最少有4个面是长方形,最多有2个面是正方形。
2、由6个完全相同的正方形围成的立体图形叫做正方体(也叫做立方体)。
正方体特点:
(1)正方体有12条棱,它们的长度都相等。
(2)正方体有6个面,每个面都是正方形,每个面的面积都相等。
(3)正方体可以说是长、宽、高都相等的长方体,它是一种特殊的长方体。
相同点 | 不同点 | ||
面 | 棱 | ||
长方体 | 都有6个面, 12条棱, 8个顶点。 | 6个面都是长方形。 (有可能有两个相对的面是正方形)。 | 相对的棱的长度都相等 |
正方体 | 6个面都是正方形。 | 12条棱都相等。 |
2、 长方体、正方体有关棱长计算公式:
(a:长 b:宽 c:高 L:棱长总和 S:表面积 V:体积)
长方体的棱长总和=(长+宽+高)×4=长×4+宽×4+高×4 L=(a+b+h)×4
长=棱长总和÷4-宽 -高 a=L÷4-b-h
宽=棱长总和÷4-长 -高 b=L÷4-a-h
高=棱长总和÷4-长 -宽 h=L÷4-a-b
正方体的棱长总和=棱长×12 L=a×12
正方体的棱长=棱长总和÷12 a=L÷12
4、长方体或正方体6个面和总面积叫做它的表面积。
长方体的表面积=(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)
无底(或无盖)长方体表面积= 长×宽+(长×高+宽×高)×2
S=2(ab+ah+bh)-ab S=2(ah+bh)+ab
无底又无盖长方体表面积=(长×高+宽×高)×2 S=2(ah+bh) 贴墙纸
正方体的表面积=棱长×棱长×6 S=a×a×6 用字母表示: S= 6a2
生活实际:
油箱、罐头盒等都是6个面
游泳池、鱼缸等都只有5个面
水管、烟囱等都只有4个面。
注意1:用刀分开物体时,每分一次增加两个面。(表面积相应增加)
注意2:长方体或正方体的长、宽、高同时扩大几倍,表面积会扩大倍数的平方倍。
(如长、宽、高各扩大2倍,表面积就会扩大到原来的4倍)。
5、物体所占空间的大小叫做物体的体积。
长方体的体积=长×宽×高 V=abh
长=体积÷宽÷高 a=V÷b÷h
宽=体积÷长÷高 b=V÷a÷h
高=体积÷长÷宽 h= V÷a÷b
正方体的体积=棱长×棱长×棱长
V=a×a×a= a3读作“a的立方”表示3个a相乘,(即a·a·a)
长方体或正方体底面的面积叫做底面积。
长方体(或正方体)的体积=底面积×高 用字母表示:V=S h
(横截面积相当于底面积,长相当于高)。
注意:一个长方体和一个正方体的棱长总和相等,但体积不一定相等。
6、箱子、油桶、仓库等所能容纳物体的体积,通常叫做他们的容积。
固体一般就用体积单位,计量液体的体积,如水、油等。
常用的容积单位有升和毫升也可以写成L和ml。
1升=1立方分米 1毫升=1立方厘米 1升=1000毫升
(1 L = 1 dm3 1 ml = 1 cm3)
长方体或正方体容器容积的计算方法,跟体积的计算方法相同。
但要从容器里面量长、宽、高。(所以,对于同一个物体,体积大于容积。)
注意:长方体或正方体的长、宽、高同时扩大几倍,体积就会扩大倍数的立方倍。
(如长、宽、高各扩大2倍,体积就会扩大到原来的8倍)。
*形状不规则的物体可以用排水法求体积,形状规则的物体可以用公式直接求体积。
排水法的公式:V物体 =V现在-V原来
也可以 V物体 =S×(h现在- h原来)
V物体 = S×h升高
8、【体积单位换算】(立方相邻单位进率1000)
进率: 1立方米=1000立方分米=1000000立方厘米
1立方分米=1000立方厘米=1升=1000毫升
1立方厘米=1毫升
1平方米=100平方分米=10000平方厘米
1平方千米=100公顷=1000000平方米
注意:长方体与正方体关系
把长方体或正方体截成若干个小长方体(或正方体)后,表面积增加了,体积不变。
重量单位进率,时间单位进率,长度单位进率
【单位换算】
长度单位:1千米 =1000 米 1 分米=10 厘米 1厘米=10毫米 1分米=100毫米
1米=10分米=100厘米=1000毫米 (相邻单位进率10)
面积单位:1平方千米=100公顷 1平方米=100平方分米
1平方分米=100平方厘米 1公顷=10000平方米 (平方相邻单位进率100)
质量单位:1吨=1000千克 1千克=1000克
人民币:1元=10角 1角=10分 1元=100分
第四章 分数的加法和减法
(1) 同分母分数加、减法 (分母不变,分子相加减)
1、分数数的加法和减法 (2) 异分母分数加、减法 (通分后再加减)
(3) 分数加减混合运算:同整数。
(4) 结果要是最简分数
2、带分数加减法:带分数相加减,整数部分和分数部分分别相加减,再把所得的结果合并起来。
(一)同分母分数加、减法
1、同分母分数加、减法:
同分母分数相加、减,分母不变,只把分子相加减。
2、计算的结果,能约分的要约成最简分数。
(二)异分母分数加、减法
1、分母不同,也就是分数单位不同,不能直接相加、减。
2、异分母分数的加减法:
异分母分数相加、减,要先通分,再按照同分母分数加减法的方法进行计算。
(三)分数加减混合运算
1、分数加减混合运算的运算顺序与整数加减混合运算的顺序相同。
在一个算式中,如果有括号,应先算括号里面的,再算括号外面的;如果只含有同一级运算,应从左到右依次计算。
2、整数加法的交换律、结合律对分数加法同样适用。
3、
第五章 简易方程
1、在含有字母的式子里,数字和字母。字母和字母之间的乘号可以记作“·”,也可以省略不写,数通常写在字母的前面。加号、减号除号以及数与数之间的乘号不能省略。
2、a×a可以写作a·a或a² ,a²读作a的平方。 2a表示a+a3、等式:表示相等关系的式子叫等式。
4、等式的性质:等式左右两边同时加、减、乘、除相同的数(0除外),等式依然成立。
5、方程:含有未知数的等式叫做方程。使方程左右两边相等的未知数的值,叫做方程的解。求方程的解的过程叫做解方程。解方程的格式要求:①必须写“解”并打上“:”。②所有“=”对齐。③自觉进行验算。
6、10个数量关系式:加法:和=加数+加数 一个加数=和-另一个加数
减法:差=被减数-减数 被减数=差+减数 减数=被减数-差
乘法:积=因数×因数 一个因数=积÷另一个因数
除法:商=被除数÷除数 被除数=商×除数 除数=被除数÷商
7、所有的方程都是等式,但等式不一定都是方程。
8、方程的解是一个数,解方程是一个计算过程。
9、列方程解决问题的步骤:
①弄清题意,假设未知数。②分析找出数量之间的等量关系,列方程。③解方程,未知数等号后面结果不带单位。④验算,写出答语。
六、折线统计图
5、统计图:我们学过——条形统计图、复式折线统计图。
条形统计图优点:条形统计图能形象地反映出数量的多少。
折线统计图优点:折线统计图不仅能表示出数量的多少,还能反映出数量的变化情况。
注:① 画图时注意:一“点”(描点)、 二“连”(连线) 三“标”(标数据)。
②要用不同的线段分别连接两组数据中的数。(复式5折线统计图)
期末测试卷及答案
一、直接写出得数。(5 分)
二、填空。(20 分)
5、在( )里填上合适原单位。
(1)牙膏的体积是300( )
(2)一间教室占地54( )
(3)一桶食用油5( )
(4)一盒新希望营养奶250( )
6、1.5 立方米=( )立方分米3670mL=( )L
7、12 和18 的最大公因数是( ),最小公倍数是( )。
8、一支钢笔a 元,比圆珠笔贵6 元,,一支圆珠笔( )元,3 支钢笔( )元,5
支圆珠笔( )元。
9、一个长方体的棱长和是60cm,长是6cm,宽是4 cm,表面积是( )平方厘米,体积是( )立方厘米。
10、一个棱长8dm 的正方体玻璃水箱,里面装有4.5dm 深的水,当把一块不规则的石头完全浸入水中后,水面上升到6dm,这块石头的体积是( )。
11、用4 立方米的黄沙铺在上地6.4 平方米的沙坑里,可以铺( )厚。
三、判断。(6 分)
1、分数都小于1. ( )
2、把一个橡皮泥捏成一个长方体后,形状变了体积不变。( )
3、方程是等式,等式也是方程。( )
4、
5、棱长是1cm 的正方体的体积和表面积一样大。( )
6、捐款时,小红捐了她零花钱的
四、选择。(6 分)
1、下面( )个式子是方程。
A、3+6 =9 B、4a+b C、3y=15
2、如果是
A、9 B、0 C、8
3、在解方程6x÷3=7 时,小方是这样转化的,6x÷3×3=7×3,6x=21.他这样转化的依据是( )。
A、被除数=除数×商
B、等式的基本性质
C、商不变的性质
4、立体图形
5、下列说法,正确的是( )。
A、体积单位比面积单位大。
B、最简分数的分子和分母一定是互质数。
C、一个木箱的容积和体积完全一样。
D、大于的分数只有一个。
6、如果
A、> B、< C、= D、无法比较
五、计算。(27 分)
1、计算。能简算要简算。(12 分)
2、解方程。(带*号要验算。)(10 分)
3、列式或列方程解答。(5 分)
(1)
(2)一个数的4 倍比它的2 倍多12,这个数是多少?
五、看图计算,填空。(11 分)
1、下图是一个长方体展开图,求它的体积和表面积。
2、根据统计图填空。(6 分)
陈亮每年生日都测量体重。下图是他8~14 岁之间测量的体重与全国同龄男生标准体重对比的统计图(6 分)
(1)陈亮的体重在他( )岁时增长的幅度最大
(2)陈亮的体重与标准体重相比,一直( )
(3)你知道肥胖对身体的危害吗?你能给陈亮提出哪些建议?
六、“走进生活”用一用(共25 分,每题5 分)
1.给这个礼品盒捆丝带,打结处需30cm,一共要多少cm?
2.甲乙两辆汽车同时从相距525km 的两个城市相对开出。甲车的速度是乙车的1.5 倍,经过5 时相遇。甲乙两车每时分别行多少km?
3.某服饰公司四月份完成季度计划的
4.根据小票的信息,你能提出什么数学问题?并解决?
5.一个正方体玻璃器皿,从里面量长、宽均为20cm,向容器中倒入6 L水,再把一个苹果放入水中。这时量得容器内的水深是17cm。这个苹果的体积是多少?
参考答案
一、直接写出得数。
3/4,5/7,5/12,1/6,0.09;3/10,2/3,13/12,1/2,x,
二、填空。
1、5/9,3/4,5/4; 2、7/15;
3、1/9,11;
4、5,20,21;
5、立方厘米,平方米,升,毫升;
6、1500,3.67;
7、6,36;
8、a - 6,3a,5(a - 6),
9、148,120;
10、13.2 立方分米,
11、0.635 米
三、判断。×,√,×,×,×,×;
四、选择。C,C,B,C,
五、六、略
图文来自网络,版权归原作者,如有不妥,告知即删